影响电催化的关键因素
(1)阴极材料
碳基材料、金属材料等是常用的阴极材料。在电催化过程中,在阴极发生电催化还原,主要有重金属离子回收(Cr6+等)、析氢反应等。碳基材料比表面积大,导电性能好,是目前应用最广的阴极材料。贾进对N掺杂Mo2C纳米片电催化还原产氢进行了研究,研究表明,其过电势可达99 mV。但碳基材料机械损耗大,且关于碳基材料对析氢反应的机理尚待系统研究。针对传统碳基材料存在的不足,Kai Meng等开发了一种非碳基MoS2-VN/CTAB(CTAB:十六烷基三甲基溴化铵)材料用于电催化产氢,结果表明,其过电势为83 mV,更容易发生反应。
阴极的析氢副反应会降低非产氢的电催化效率,因此需要较低的析氢过电位材料。铂(Pt)电极析氢电位低,高效稳定,但Pt电极昂贵,对杂质敏感,容易被CO等毒化;而钯(Pd)具有良好的储氢活化氢性能,因此基于Pd系的材料是电催化还原的发展方向。
P. Gayen等在TiO2滤膜上沉积Pd-Cu,并将其用于电催化还原硝酸盐,结果表明,硝酸盐转化率达67%。童雅婷采用制备的Pd-In/Al2O3和Pd/Al2O3电催化还原溴酸盐,结果表明,在最佳条件下,溴酸盐去除率可达96.37%。
(2)阳极材料
大部分污染物在阳极被氧化分解。阳极材料主要有铂族贵金属、硼掺杂金刚石(BDD)、金属氧化物等。
铂族贵金属耐腐蚀、析氧电位高,但价格昂贵。BDD电极工作电位宽(达3.5 V),吸附能力弱,不会造成污染物在电极表面积累,且其不仅能在电极表面电解水产生·OH,而且能够自旋捕获·OH,加快污染物的氧化降解。
李兆欣等比较了BDD、Ti- RuO2-IrO2阳极对垃圾渗滤液中TOC的去除效果,结果表明,降解6 h后,Ti-RuO2-IrO2电极因产生·OH能力弱,对TOC的去除率只有20%左右,而BDD电极的TOC去除率达到了85%。Yandi Lan等采用BDD阳极降解药物环丙沙星,通过实验和建模的方法,揭示了氧原子与·OH反应生成强氧化剂的降解机理;对电解液的检测结果表明,药物被完全矿化。但BDD电极造价昂贵,不能大范围地推广使用。
金属氧化物电极最初只由金属氧化物(如SnO2、TiO2、PbO2等)构成,但研究发现这类电极机械损耗大,因此很快被尺寸稳定阳极(dismensionally stable anodes,DSA)替代。DSA是电极基底采用耐腐蚀金属材料(如铂、钛等),表面涂层使用过渡金属氧化物(如RuO2、IrO2等)的一种阳极材料,其涂层由1种或2种及以上的金属氧化物组成。当下研究最多的是钛基金属氧化物电极。
常规的Ti/PbO2中的PbO2虽有良好的导电性、较高的析氧过电位,但其与基体结合较差,容易从电极中脱落,且存在浸出Pb的二次污染问题。为了解决上述存在的问题,学者们研究了多种改进材料的方法。
Chao Tan等在Ti纳米管上沉积PbO2,相比于传统的Ti/PbO2,其氧化能力更强,去除污染物效果更好。郑超则引入了Ni中间层,增加了电沉积速率,且其与在制备PbO2过程中添加的稀土Nd3+会发生协同作用,由此制备的Ti/Ni/PbO2电极的苯酚降解率达89.78%。
郑辉等在Ti/PbO2表面掺杂La/Ce,掺杂后的电极表面更加紧致均匀,提高了析氧电位、电流密度,加快了反应速度。徐旭东等的研究表明,Bi+Cu混合掺杂的Ti/PbO2电极能显著改善电极表面PbO2晶体性质,产生·OH的能力更强,该电极的COD去除率达到67.73%。
(3)粒子电极材料
寻求适合的阳极材料是二维电极的关键,粒子电极的出现降低了对阳极材料的要求,缩短了传质距离,提高了降解速率和电流效率,有效利用了电解空间,为废水的电催化处理开辟一条新渠道。
粒子电极表面会产生大量的强氧化物质,污染物吸附在粒子表面发生电催化反应。机理如图 1所示,通上直流电源,粒子电极因静电感应而带电,靠近阳极的带负电,靠近阴极的带正电,使每一个粒子构成一个微小电解槽,电催化可在每一个粒子电极表面同时进行。
图 1 三维电极电解机理
粒子电极的材料主要有活性炭、石墨烯基材料等碳材料,负载型金属氧化物等多孔颗粒。活性炭比表面积大,化学稳定性好,含有如羧基、羰基、羟基等官能团。Xiuping Zhu等利用活性炭构建了对硝基苯酚(PNP)降解的三维电极反应器,结果表明,粒子电极提高了阳极系统的间接氧化作用,与二维体系相比,三维体系使PNP和COD的降解率明显提高了2~7倍。但低阻抗的活性炭粒子电极容易产生短路电流,降低电流效率,对此可通过负载组分来抑制短路电流的产生和提高催化活性。
Wenwen Zhang等将Co负载在活性炭粒子上,由此在复合粒子电极表面产生了大量自由基,提高了系统的氧化能力。活性炭廉价易得,吸附性好,仍是当下应用最多的粒子电极材料。
石墨烯及其衍生物比表面积大,电导率高,稳定性好,为二维纳米薄片原子层,是良好的载体。S. Wu等在rGO上负载Fe3O4和Pt纳米粒子,使其同时具有Fe3O4纳米粒子的磁性和Pt纳米粒子的催化性能,研究表明,制备的材料对亚甲基蓝降解有良好的催化性能,且至少可回收利用16次。其缺点是在石墨烯上很难实现高度分散,因金属粒子并不会稳定地固定在石墨烯表面,相反很容易扩散形成颗粒团簇。
因此,学者将O、N、S等作为锚定位点的杂原子掺杂到石墨烯的碳平面上,形成掺杂石墨烯,提供了稳定和分散的活性位点。Jianwei Sun等将钌和钴双金属纳米合金包覆在氮掺杂的石墨烯层中,研究表明,石墨烯与钌和钴双金属之间的相互作用调节了复合材料的电子性质,从而提高了催化活性。以石墨烯为基体的粒子材料一直是研究热点,学者们正不断深入研究石墨烯载体与负载元素之间的相互作用,以揭示其相互作用与催化性能之间的关系。
负载型金属氧化物粒子电极(Al2O3类、Fe3O4类)因具有较高的选择性和催化活性而受到广泛关注。刘艳青等对以γ-Al2O3@ MIL-101(Fe)为粒子电极的三维电极体系处理废水中的罗丹明B进行了研究,结果表明,在最优条件下,电催化降解罗丹明B的去除率达97%。负载型粒子电极的典型基体就是金属有机骨架,其通过多位配体将金属颗粒连接成无限阵列的混合化合物,获得多孔纳米结构,加快了反应效率。
Lili Li等以金属有机骨架为基础,合成了多孔氧化铜晶体(CuO-BTC,BTC:苯-1,3,5-三羧酸酯)结构的粒子电极,在该粒子电极的电催化下,污染物可在1.3 s内被快速降解,且该粒子电极连续使用5次后,仍有较好的催化活性。负载型粒子电极可增大活性表面积,暴露出更多的纳米活性位点,是一种很有前景的粒子电极材料。
此外,泡沫态的金属粒子电极在三维电极中也有重要应用,主要有泡沫铁、泡沫铜、泡沫钛、泡沫镍等。刘钰鑫等以泡沫镍颗粒为粒子电极构成光电体系降解甲基橙,在优化条件下,甲基橙的去除率达到93.77%。还有层状双金属氢氧化物等作为催化剂、催化剂载体、催化剂前驱体的应用,吸引科研工作者继续深入探究其电催化机理。